Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Sci Total Environ ; 929: 172416, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38631627

RESUMO

Widespread use of copper-based agrochemical may cause copper excessive accumulation in agricultural soil to seriously threaten crop production. Recently, fullerenols are playing important roles in helping crops build resistance to abiotic stresses by giving ingenious and successful resolutions. However, there is a lack of knowledge on their beneficial effects in crops under stresses induced by heavy metals. Herein, the visual observation of Cu2+-mediated assembly of fullerenols via electrostatic and coordination actions was carried out in vitro, showing that water-soluble nanocomplexes and water-insoluble cross-linking nanohybrids were selectively fabricated by precisely adjusting feeding ratios of fullerenols and CuSO4. Furthermore, maize simultaneous exposure of fullerenols and CuSO4 solutions was tested to investigate the comparative effects of seed germination and seedling growth relative to exposure of CuSO4 alone. Under moderate Cu2+ stresses (40 and 80 µM), fullerenols significantly mitigated the detrimental effects of seedlings, including phenotype, root and shoot elongation, biomass accumulation, antioxidant capacity, and Cu2+ uptake and copper transporter-related gene expressions in roots. Under 160 µM of Cu2+ as a stressor, fullerenols also accelerated germination of Cu2+-stressed seeds eventually up to the level of the control. Summarily, fullerenols can enhance tolerance of Cu2+-stressed maize mainly due to direct detoxification through fullerenol-Cu2+ interactions restraining the Cu2+ intake into roots and reducing free Cu2+ content in vivo, as well as fullerenol-maize interactions to enhance resistance by maintaining balance of reactive oxygen species and optimizing the excretion and transport of Cu2+. This will unveil valuable insights into the beneficial roles of fullerenols and its mechanism mode in alleviating heavy metal stress on crop plants.


Assuntos
Cobre , Plântula , Zea mays , Zea mays/efeitos dos fármacos , Zea mays/fisiologia , Cobre/toxicidade , Plântula/efeitos dos fármacos , Poluentes do Solo , Fulerenos , Estresse Fisiológico , Germinação/efeitos dos fármacos
2.
Drug Resist Updat ; 73: 101055, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38387281

RESUMO

Tumor-associated macrophages (TAMs) are often associated with chemoresistance and resultant poor clinical outcome in solid tumors. Here, we demonstrated that TAMs-released chemokine-C-C motif chemokine 22 (CCL22) in esophageal squamous cell carcinoma (ESCC) stroma was tightly correlated with the chemoresistance of ESCC patients. TAMs-secreted CCL22 was able to block the growth inhibitory and apoptosis-promoting effects of cisplatin on ESCC cells. Mechanistically, CCL22 stimulated intratumoral diacylglycerol kinase α (DGKα) to produce phosphatidic acid (PA), which suppressed the activity of NADPH oxidase 4 (NOX4) and then blocked the overproduction of intratumoral reactive species oxygen (ROS) induced by cisplatin. CCL22 activated DGKα/nuclear factor-κB (NF-κB) axis to upregulate the level of several members of ATP binding cassette (ABC) transporter superfamily, including ABC sub-family G member 4 (ABCG4), ABC sub-family A member 3 (ABCA3), and ABC sub-family A member 5 (ABCA5), to lower the intratumoral concentration of cisplatin. Consequently, these processes induced the cisplatin resistance in ESCC cells. In xenografted models, targeting DGKα with 5'-cholesterol-conjugated small-interfering (si) RNA enhanced the chemosensitivity of cisplatin in ESCC treatment, especially in the context of TAMs. Our data establish the correlation between the TAMs-induced intratumoral metabolic product/ROS axis and chemotherapy efficacy in ESCC treatment and reveal relevant molecular mechanisms.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/patologia , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Diacilglicerol Quinase/genética , Diacilglicerol Quinase/farmacologia , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Macrófagos Associados a Tumor , NADPH Oxidase 4/genética , Espécies Reativas de Oxigênio , RNA Interferente Pequeno/genética , Proliferação de Células , Quimiocinas/farmacologia , Quimiocinas/uso terapêutico , Linhagem Celular Tumoral , Quimiocina CCL22/farmacologia , Quimiocina CCL22/uso terapêutico
3.
Signal Transduct Target Ther ; 9(1): 21, 2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38280862

RESUMO

Abnormal metabolism is regarded as an oncogenic hallmark related to tumor progression and therapeutic resistance. Present study employed multi-omics, including phosphoproteomics, untargeted metabolomics and lipidomics, to demonstrate that the pAKT2 Ser128 and pCCTα Ser315/319/323-positive cancer-associated fibroblasts (CAFs) substantially release phosphatidylcholines (PCs), contributing to the resistance of focal adhesion kinase (FAK) inhibitors in esophageal squamous cell carcinoma (ESCC) treatment. Additionally, we observed extremely low levels of FAK Tyr397 expression in CAFs, potentially offering no available target for FAK inhibitors playing their anti-growth role in CAFs. Consequently, FAK inhibitor increased the intracellular concentration of Ca2+ in CAFs, promoting the formation of AKT2/CCTα complex, leading to phosphorylation of CCTα Ser315/319/323 sites and eventually enhancing stromal PC production. This activation could stimulate the intratumoral Janus kinase 2 (JAK2)/Signal transducer and activator of transcription 3 (STAT3) pathway, triggering resistance to FAK inhibition. Analysis of clinical samples demonstrated that stromal pAKT2 Ser128 and pCCTα Ser315/319/323 are related to the tumor malignancy and reduced patient survival. Pseudo-targeted lipidomics and further validation cohort quantitatively showed that plasma PCs enable to distinguish the malignant extent of ESCC patients. In conclusion, inhibition of stroma-derived PCs and related pathway could be possible therapeutic strategies for tumor therapy.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Proteína-Tirosina Quinases de Adesão Focal/genética , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Fibroblastos Associados a Câncer/metabolismo , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/metabolismo , Transdução de Sinais , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo
4.
RSC Adv ; 14(2): 1472-1487, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38174261

RESUMO

Metal ion-nanocluster coordination complexes can produce a variety of functional engineered nanomaterials with promising characteristics to enable widespread applications. Herein, the visualization observation of the interactions of metal ions and fullerene derivatives, particularly anionic fullerenols (Fol), were carried out in aqueous solutions. The alkali metal salts only resulted in salting out of Fol to gain re-soluble sediments, whereas multivalent metal cations (Mn+, n = 2, 3) modulated further assembly of Fol to produce insoluble hybrids. These provide crucial insights into the directed assembly of Fol that two major forces involved in actuation are electrostatic and coordination effects. Through the precise modulation of feed ratios of Fol to Mn+, a variety of water-soluble Mn+@Fol coordination complexes were facilely prepared and subsequently characterized by various measurements. Among them, X-ray photoelectron spectra validated the coordination effects through the metal cation and oxygen binding feature. Transmission electron microscopy delivered valuable information about diverse morphologies and locally-ordered microstructures at the nanoscale. This study opens a new opportunity for developing a preparation strategy to fabricate water-soluble metal cation-fullerenol coordination complexes with various merits for potential application in biomedical fields.

5.
Int J Food Microbiol ; 411: 110551, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38171235

RESUMO

Nanomaterials are widely investigated in sustainable agriculture owing to their unique physicochemical properties, especially Cu-based nanomaterial with eco-friendliness and essential for plant. However, the effect of CuO nanomaterial on Bipolaris sorokiniana (B. sorokiniana) is yet to be systematically understood. In this study, a three-dimension hierarchical structure CuO nanoflower (CuO NF) with ultrathin petals and excellent dispersibility in water was constructed and proved to have outstanding antifungal activity against B. sorokiniana with the inhibition rate of 86 % in mycelial growth, 74 % in mycelial dry weight and 75 % in conidial germination. Furthermore, the antifungal mechanism was assigned to the production of reactive oxygen species in intracellular caused by antioxidant mimicking activity of CuO NF to damage of cell membrane integrity and result cellular leakage. Additionally, the good control effect of CuO NF on wheat diseases caused by B. sorokiniana was demonstrated through pot experiment. This article firstly reveals the antifungal activity and mechanism of CuO NF on B. sorokiniana, and establishes the relationship between enzyme-like activity of CuO NF and its antifungal activity, which provides a promising application of Cu-based nanomaterial as nanofungicide in plant protection and a theoretical foundation for structure design of nanomaterials to improve their antifungal activities.


Assuntos
Ascomicetos , Nanoestruturas , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Nanoestruturas/química
6.
Org Biomol Chem ; 22(5): 998-1009, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38186088

RESUMO

An efficient Ru(II)-catalyzed C-H activation-based spiroannulation of benzoxazines with the easily available benzoquinone and N-sulfonyl quinone monoimine has been realized, providing a straightforward strategy to access NH-containing spiropyrans in moderate to good yields with good functional group compatibility. The procedure features atom- and step-economy, mild conditions, and excellent chemoselectivity. Moreover, a catalytically competent five-membered cycloruthenated complex has been isolated.

7.
MedComm (2020) ; 4(6): e381, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37846367

RESUMO

Esophageal squamous cell carcinoma (ESCC) is a frequently seen esophageal tumor type in China. Activation of signaling proteins and relevant molecular mechanisms in ESCC are partially explored, impairing the antitumor efficiency of targeted therapy in ESCC treatment. Tumor-associated macrophages (TAMs)-released C-C motif chemokine 22 (CCL22) can activate intratumoral focal adhesion kinase (FAK), thus promoting the progression of ESCC. Here, we demonstrated that highly secreted CCL22 by TAMs (CCL22-positive TAMs) induced ESCC cell stemness and invasion through facilitating transcriptional activity of intratumoral glioma-associated oncogene 1 (Gli1), a downstream effector for Hedgehog (HH) pathway. Mechanistically, FAK-activated protein kinase B (AKT) mediated Gli1 phosphorylation at its Ser112/Thr115/Ser116 sites and released Gli1 from suppressor of fused homolog, the endogenous inhibitor of Gli1 to activate downstream stemness-associated factors, such as SRY-box transcription factor 2 (SOX2), Nanog homeobox (Nanog), or POU class 5 homeobox (OCT4). Furthermore, inhibition of FAK activity by VS-4718, the FAK inhibitor, enhanced antitumor effect of GDC-0449, the HH inhibitor, both in xenografted models and in vitro assays. Clinically, CCL22/Gli1 axis is used to evaluate ESCC prognosis. Overall, our study establishes the communication of FAK with HH pathway and offers the novel mechanism related to Gli1 activation independent of Smoothened as well as the rationale for the anti-ESCC combination treatment.

8.
Signal Transduct Target Ther ; 8(1): 302, 2023 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-37582812

RESUMO

Reprogrammed cellular metabolism is essential for maintaining cancer stem cells (CSCs) state. Here, we report that mitochondrial D-lactate catabolism is a necessary initiating oncogenic event during tumorigenesis of esophageal squamous cell carcinoma (ESCC). We discover that cyclin-dependent kinase 7 (CDK7) phosphorylates nuclear Yes-associated protein 1 (YAP) at S127 and S397 sites and enhances its transcription function, which promotes D-lactate dehydrogenase (LDHD) protein expression. Moreover, LDHD is enriched significantly in ESCC-CSCs rather than differentiated tumor cells and high LDHD status is connected with poor prognosis in ESCC patients. Mechanistically, the CDK7-YAP-LDHD axis helps ESCC-CSCs escape from ferroptosis induced by D-lactate and generates pyruvate to satisfy energetic demands for their elevated self-renewal potential. Hence, we conclude that esophageal CSCs adopt a D-lactate elimination and pyruvate accumulation mode dependent on CDK7-YAP-LDHD axis, which drives stemness-associated hallmarks of ESCC-CSCs. Reasonably, targeting metabolic checkpoints may serve as an effective strategy for ESCC therapy.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Ferroptose , Humanos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Linhagem Celular Tumoral , Quinases Ciclina-Dependentes/metabolismo , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas do Esôfago/metabolismo , Ferroptose/genética , L-Lactato Desidrogenase , Ácido Láctico/metabolismo , Células-Tronco Neoplásicas/metabolismo , Fatores de Transcrição/genética
9.
Carcinogenesis ; 44(6): 451-462, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37279554

RESUMO

Epidermal growth factor receptor (EGFR) is one of the most common amplified and overexpressed oncogenes in esophageal squamous cell carcinoma (ESCC), while the clinical efficacy of EGFR-targeted therapy in ESCC is dismal. Here, we evaluated the efficacy of dual blockage using monoclonal antibody against EGFR (Nimotuzumab) and an Wee1 inhibitor (AZD1775) in ESCC. We found that the mRNA and protein expression of EGFR and Wee1 were positively correlated in ESCC. Nimotuzumab-AZD1775 co-treatment inhibited tumor growth in PDX models with different drug susceptibility. Transcriptome sequencing and mass spectrometry analysis indicated that higher sensitive models showed enrichment of the PI3K/Akt or MAPK signaling pathway in Nimotuzumab-AZD1775 group compared with control group. In vitro experiments showed that the combination further inhibit PI3K/Akt and MAPK pathways compared to their monotherapy as indicated by downregulation of pAKT, pS6, pMEK, pErk and p-p38 MAPK. Furthermore, AZD1775 potentiated Nimotuzumab's antitumor effect through inducing apoptosis. Meanwhile, the bioinformatics analysis suggests the POLR2A might be candidate molecule of EGFR/Wee1 downstream. In conclusion, our work uncovers that EGFR-mAb Nimotuzumab combined with Wee1 inhibitor AZD1775 elicited potentiated anticancer activity against ESCC cell line and PDXs partially through PI3K/Akt and MAPK pathways blockade. These preclinical data raise the promising that ESCC patients may benefit from dual target EGFR and Wee1.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/metabolismo , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Proteínas Proto-Oncogênicas c-akt/uso terapêutico , Fosfatidilinositol 3-Quinases , Receptores ErbB/genética , Receptores ErbB/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Apoptose
10.
Chin J Cancer Res ; 35(2): 176-190, 2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-37180834

RESUMO

Objective: Ferroptosis is a novel cell death process which displays a promising role in cancer treatment. However, clinically available drugs targeting ferroptosis are rarely used, and yet there are no studies reporting on inducing ferroptosis via Chinese herbal extracts. Here we explored the tumor inhibition effects of Ganoderma lucidum (G. lucidum) on oral squamous cell carcinoma (OSCC). Specifically, we aimed to clarify the biological mechanism of components in the dietary, aqueous-soluble sporoderm-removed G. lucidum spore powder (A-GSP). Methods: Preliminary transcriptome analysis revealed the significant enrichment of the ferroptosis pathway. Cellular Fe2+, glutathione (GSH), malondialdehyde (MDA), reactive oxygen species (ROS) and lipid peroxide levels were measured to identify ferroptosis occurrence. Western blotting was used to measure ferroptosis-related proteins. Changes in mitochondria morphology and function were observed with transmission electron microscopy (TEM) and ATP detection assays. Ferroptosis inhibitor ferrostatin-1 was then used to verify the anti-tumor effects of A-GSP. Finally, nude mice xenograft models of oral cancer confirmed that A-GSP inhibited tumor growth. Results: A-GSP promoted ferroptosis in oral cancer cells by inducing Fe2+ influx, GSH depletion, as well as lipid peroxide and ROS accumulation. Ferroptosis-related proteins exhibited corresponding changes, particularly Acyl-coA synthetase long chain family member 4 (ACSL4) increase and glutathione peroxidase 4 (GPX4) decrease. A-GSP considerably lowered mitochondrial volume and ridge number, while significantly decreasing ATP production. Ferrostatin-1 reversed all of these A-GSP-induced changes. In vivo, A-GSP exerted a ferroptosis-mediated tumor-suppressing effect without observable adverse reactions. Conclusions: Our findings demonstrate the therapeutic potential of A-GSP for treating patients with OSCC by targeting ferroptosis.

11.
Talanta ; 260: 124560, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37116362

RESUMO

Quantum dots (QDs) have been widely used for bioimaging in vivo because of their excellent optical properties. As part of the preparation process of QD-based nanohybrids, purification is an important step for minimizing contaminants and improving the quality of the product. In this work, we describe high-performance size exclusion chromatography (HPSEC) used to purify nanohybrids of CdSe/ZnS QDs and anti-human epidermal growth factor receptor 2 antibodies (QD-HER2-Ab). The unbound antibody and suspended agglomerates were removed from freshly prepared QD-HER2-Ab via HPSEC. Pure and homogeneous QD-HER2-Ab were then used as immunofluorescence target imaging bioprobes in vivo. The QD-HER2-Ab did not cause any obvious acute toxicity in mice one week after a single intravenous injection of 15 nmol/kg. The purified QD-HER2-Ab bioprobes showed high tumor targeting ability in a human breast tumor xenograft nude mouse model (24 h after injected) with the possibility of in vivo immunofluorescence tumor imaging. The immunofluorescence imaging background signal and acute toxicity in vivo were minimized because of the reduction of residual QDs. HPSEC-purified QD-HER2-Ab is an accurate and convenient tool for in vivo tumor target imaging and HER2 detection, thus providing a basis for the purification of other QD-based bioprobes.


Assuntos
Neoplasias da Mama , Pontos Quânticos , Humanos , Camundongos , Animais , Feminino , Pontos Quânticos/toxicidade , Pontos Quânticos/química , Anticorpos/química , Neoplasias da Mama/diagnóstico por imagem , Corantes
12.
Acta Pharm Sin B ; 13(2): 694-708, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36873192

RESUMO

Stroma surrounding the tumor cells plays crucial roles for tumor progression. However, little is known about the factors that maintain the symbiosis between stroma and tumor cells. In this study, we found that the transcriptional regulator-signal transducer and activator of transcription 3 (Stat3) was frequently activated in cancer-associated fibroblasts (CAFs), which was a potent facilitator of tumor malignancy, and formed forward feedback loop with platelet-activating factor receptor (PAFR) both in CAFs and tumor cells. Importantly, PAFR/Stat3 axis connected intercellular signaling crosstalk between CAFs and cancer cells and drove mutual transcriptional programming of these two types of cells. Two central Stat3-related cytokine signaling molecules-interleukin 6 (IL-6) and IL-11 played the critical role in the process of PAFR/Stat3 axis-mediated communication between tumor and CAFs. Pharmacological inhibition of PAFR and Stat3 activities effectively reduced tumor progression using CAFs/tumor co-culture xenograft model. Our study reveals that PAFR/Stat3 axis enhances the interaction between tumor and its associated stroma and suggests that targeting this axis can be an effective therapeutic strategy against tumor malignancy.

13.
Sci China Life Sci ; 66(6): 1245-1263, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36763244

RESUMO

Although Src is one of the oldest and most investigated oncoproteins, its function in tumor malignancy remains to be defined further. In this study, we demonstrated that the inhibition of Src activity by ponatinib effectively suppressed several malignant phenotypes of esophageal squamous cell carcinoma (ESCC) both in vitro and in vivo, whereas it did not produce growth-inhibitory effects on normal esophageal epithelial cells (NEECs). Importantly, we combined phosphoproteomics and several cellular and molecular biologic strategies to identify that Src interacted with the members of Src-family kinases (SFKs), such as Fyn or Lyn, to form heterodimers. Src interactions with Fyn and Lyn phosphorylated the tyrosine sites in SH2 (Fyn Tyr185 or Lyn Tyr183) and kinase domains (Fyn Tyr420 or Lyn Tyr397), which critically contributed to ESCC development. By contrast, Src could not form heterodimers with Fyn or Lyn in NEECs. We used RNA sequencing to comprehensively demonstrate that the inhibition of Src activity effectively blocked several critical tumor-promoting pathways, such as JAK/STAT, mTOR, stemness-related, and metabolism-related pathways. Results of the real-time polymerase chain reaction (RT-PCR) assay confirmed that Lyn and Fyn were critical effectors for the Src-mediated expression of tumor growth or metastasis-related molecules. Furthermore, results of the clinical ESCC samples showed that the hyperactivation of pSrc Tyr419, Fyn Tyr185 or Tyr420, and Lyn Tyr183 or Tyr397 could be biomarkers of ESCC prognosis. This study illustrates that Src/Fyn and Src/Lyn heterodimers serve as targets for the treatment of ESCC.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Proteínas Proto-Oncogênicas c-fyn/genética , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Proteínas Proto-Oncogênicas , Carcinoma de Células Escamosas do Esôfago/diagnóstico , Neoplasias Esofágicas/diagnóstico , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/genética , Quinases da Família src/genética , Quinases da Família src/metabolismo , Tirosina/metabolismo , Fosforilação
14.
Theranostics ; 12(14): 6160-6178, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36168622

RESUMO

Background: Esophageal squamous cell carcinoma (ESCC) is one of the most common cancers globally, with a poor prognosis and ambiguous therapy target. As a hallmark of cancer, metabolism reprogramming plays a critical role in the development of ESCC; however, the genomic alterations underlying this reconfiguration are still largely unknown. Methods: We have comprehensively studied the metabolic genomic variations in an integrated ESCC cohort of 490 patients and characterized the somatic alterations associated with various metabolic pathways. Results: The somatic mutations and copy number alterations (CNAs) occurred heterogeneously in all patients. Using CNA-based clustering, we stratified patients into three clusters and Cluster3 with more deletions marked for worse prognosis. Our findings revealed detailed genetic alterations in components of metabolic pathways and highlighted the role of metal ion channel transporters and non-neuronal/neuronal synapse systems in the development of ESCC. We found a subset of potential metabolic drivers and functionally validated RYR2, MGST3, and CYP8B1 involved in the ESCC-associated malignancy. Another key finding was that we identified 27 metabolic genes with genomic alterations that could serve as independent prognostic factors and figured out two genetic panels that could stratify patients into distinct prognostic groups. Conclusion: Collectively, our study provided a deep insight into the metabolic landscape in ESCC, extending our understanding of the metabolic reconfiguration underlying the genomic basis of ESCC. Furthermore, our findings revealed potential prognostic factors of ESCC, which are expected to contribute to the accurate determination of the prognosis in the clinic.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/genética , Genômica , Humanos , Canal de Liberação de Cálcio do Receptor de Rianodina , Esteroide 12-alfa-Hidroxilase
15.
Clin Transl Med ; 12(8): e945, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35979619

RESUMO

BACKGROUND: Recently, the mechanism by which cells adapt to intrinsic and extrinsic stresses has received considerable attention. Tat-interactive protein 60-kDa/ataxia-telangiectasia-mutated (TIP60/ATM) axis-mediated DNA damage response (DDR) is vital for maintaining genomic integrity. METHODS: Protein levels were detected by western blot, protein colocalisation was examined by immunofluorescence (IF) and protein interactions were measured by co-immunoprecipitation, proximity ligation assay and GST pull-down assays. Flow cytometry, comet assay and IF assays were used to explore the biological functions of sequence similarity 135 family member B (FAM135B) in DDR. Xenograft tumour, FAM135B transgenic mouse models and immunohistochemistry were utilised to confirm in vitro observations. RESULTS: We identified a novel DDR regulator FAM135B which could protect cancer cells from genotoxic stress in vitro and in vivo. The overexpression of FAM135B promoted the removal of γH2AX and 53BP1 foci, whereas the elimination of FAM135B attenuated these effects. Consistently, our findings revealed that FAM135B could promote homologous recombination and non-homologous end-joining repairs. Further study demonstrated that FAM135B physically bound to the chromodomain of TIP60 and improved its histone acetyltransferase activity. Moreover, FAM135B enhanced the interactions between TIP60 and ATM under resting conditions. Intriguingly, the protein levels of FAM135B dramatically decreased following DNA damage stress but gradually increased during the DNA repair period. Thus, we proposed a potential DDR mechanism where FAM135B sustains a reservoir of pre-existing TIP60-ATM assemblies under resting conditions. Once cancer cells suffer DNA damage, FAM135B is released from TIP60, and the functioning pre-assembled TIP60-ATM complex participates in DDR. CONCLUSIONS: We characterised FAM135B as a novel DDR regulator and further elucidated the role of the TIP60-ATM axis in response to DNA damage, which suggests that targeting FAM135B in combination with radiation therapy or chemotherapy could be a potentially effective approach for cancer treatment.


Assuntos
Dano ao DNA , Reparo do DNA , Acetilação , Animais , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Dano ao DNA/genética , Reparo do DNA/genética , Humanos , Camundongos , Processamento de Proteína Pós-Traducional
16.
Cell Mol Immunol ; 19(9): 1054-1066, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35962191

RESUMO

Tumor cell dependence on activated oncogenes is considered a therapeutic target, but protumorigenic microenvironment-mediated cellular addiction to specific oncogenic signaling molecules remains to be further defined. Here, we showed that tumor-associated macrophages (TAMs) produced an abundance of C-C motif chemokine 22 (CCL22), whose expression in the tumor stroma was positively associated with the level of intratumoral phospho-focal adhesion kinase (pFAK Tyr397), tumor metastasis and reduced patient survival. Functionally, CCL22-stimulated hyperactivation of FAK was correlated with increased malignant progression of cancer cells. CCL22-induced addiction to FAK was demonstrated by the persistent suppression of tumor progression upon FAK-specific inhibition. Mechanistically, we identified that diacylglycerol kinase α (DGKα) acted as a signaling adaptor to link the CCL22 receptor C-C motif chemokine receptor 4 (CCR4) and FAK and promoted CCL22-induced activation of the FAK/AKT pathway. CCL22/CCR4 signaling activated the intracellular Ca2+/phospholipase C-γ1 (PLC-γ1) axis to stimulate the phosphorylation of DGKα at a tyrosine residue (Tyr335) and promoted the translocation of DGKα to the plasma membrane to assemble the DGKα/FAK signalosome, which critically contributed to regulating sensitivity to FAK inhibitors in cancer cells. The identification of TAM-driven intratumoral FAK addiction provides opportunities for utilizing the tumor-promoting microenvironment to achieve striking anticancer effects.


Assuntos
Quimiocina CCL22 , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Quinase 1 de Adesão Focal , Linhagem Celular Tumoral , Quimiocina CCL22/metabolismo , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/metabolismo , Carcinoma de Células Escamosas do Esôfago/patologia , Quinase 1 de Adesão Focal/metabolismo , Humanos , Fosforilação , Transdução de Sinais , Microambiente Tumoral , Macrófagos Associados a Tumor
17.
Int J Biol Sci ; 18(13): 4824-4836, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35982900

RESUMO

Long noncoding RNAs (lncRNAs) are dysregulated in many cancers. Here, we identified the molecular mechanisms of lncRNA Cancer Susceptibility Candidate 8 (CASC8) in promoting the malignancy of esophageal squamous cell carcinoma (ESCC). CASC8 was highly overexpressed in ESCC tissues and upregulation of CASC8 predicted poor prognosis in ESCC patients. Moreover, CASC8 decreased the cisplatin sensitivity of ESCC cells and promoted ESCC tumor growth in vivo. Mechanistically, CASC8 interacted with heterogeneous nuclear ribonucleoprotein L (hnRNPL) and inhibited its polyubiquitination and proteasomal degradation, thus stabilizing hnRNPL protein levels and activating the Bcl2/caspase3 pathway. Additionally, AlkB Homolog 5, RNA demethylase (ALKBH5)-mediated m6A demethylation stabilized the CASC8 transcript, resulting in CASC8 upregulation. Taken together, these findings identified an oncogenic function of CASC8 in the progression of ESCC, which suggest that CASC8 might become a potential prognostic biomarker in ESCC.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Ribonucleoproteínas Nucleares Heterogêneas Grupo L , RNA Longo não Codificante , Ribonucleoproteínas , Linhagem Celular Tumoral , Proliferação de Células/genética , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo L/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo L/metabolismo , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Regulação para Cima/genética
18.
Int J Biol Macromol ; 217: 356-366, 2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-35839953

RESUMO

Nanochitin whisker (NC) is an advanced nanobiomaterial with novel physicochemical and biological properties. Fusarium pseudograminearum (Fpg) is an important pathogenic fungus causing wheat crown rot disease. This study explored the mode of action of NC against Fpg as a target microorganism. The effects of different treatments and concentrations of NC on the fungal growth and conidial germination were investigated by in vitro bioassay. The impacts of NC on cell structure integrity, membrane permeability, pathogenesis related key enzymes activity, and the mycotoxin production were examined by electron microscopy, fluorescence spectroscopy, IR spectroscopy, conductometry, and spectrophotometry, respectively. The results showed that NC significantly reduced hyphal growth, and the spore germination rate of Fpg declined by 33.0 % and 23.2 % when Fpg was treated with 30 and 300 µg/mL of NC, respectively. NC vigorously influenced structural stability of cell wall by destroying dextran structure, and strongly stimulated ergosterol production altering membrane integrity of the fungus. It reduced the activities of enzymes related to energy-supply like nicotinamide adenine dinucleotide oxidase and succinate dehydrogenase remarkably. The production of fungal mycotoxin deoxynivalenol was also decreased by NC. These findings provide an important basis for fully understanding the mechanism of nanobiomaterial in plant fungal disease control.


Assuntos
Fusarium , Micotoxinas , Animais , Micotoxinas/farmacologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Vibrissas
19.
JCI Insight ; 6(17)2021 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-34494553

RESUMO

BACKGROUNDTargeted arterial infusion of verapamil combined with chemotherapy (TVCC) is an effective clinical interventional therapy for esophageal squamous cell carcinoma (ESCC), but multidrug resistance (MDR) remains the major cause of relapse or poor prognosis, and the underlying molecular mechanisms of MDR, temporal intratumoral heterogeneity, and clonal evolutionary processes of resistance have not been determined.METHODSTo elucidate the roles of genetic and epigenetic alterations in the evolution of acquired resistance during therapies, we performed whole-exome sequencing on 16 serial specimens from 7 patients with ESCC at every cycle of therapeutic intervention from 3 groups, complete response, partial response, and progressive disease, and we performed whole-genome bisulfite sequencing for 3 of these 7 patients, 1 patient from each group.RESULTSPatients with progressive disease exhibited a substantially higher genomic and epigenomic temporal heterogeneity. Subclonal expansions driven by the beneficial new mutations were observed during combined therapies, which explained the emergence of MDR. Notably, SLC7A8 was identified as a potentially novel MDR gene, and functional assays demonstrated that mutant SLC7A8 promoted the resistance phenotypes of ESCC cell lines. Promoter methylation dynamics during treatments revealed 8 drug resistance protein-coding genes characterized by hypomethylation in promoter regions. Intriguingly, promoter hypomethylation of SLC8A3 and mutant SLC7A8 were enriched in an identical pathway, protein digestion and absorption, indicating a potentially novel MDR mechanism during treatments.CONCLUSIONOur integrated multiomics investigations revealed the dynamics of temporal genetic and epigenetic inter- and intratumoral heterogeneity, clonal evolutionary processes, and epigenomic changes, providing potential MDR therapeutic targets in treatment-resistant patients with ESCC during combined therapies.FUNDINGNational Natural Science Foundation of China, Science Foundation of Peking University Cancer Hospital, CAMS Innovation Fund for Medical Sciences, Major Program of Shenzhen Bay Laboratory, Guangdong Basic and Applied Basic Research Foundation, and the third round of public welfare development and reform pilot projects of Beijing Municipal Medical Research Institutes.


Assuntos
Sistema y+ de Transporte de Aminoácidos/genética , Antineoplásicos/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Epigenômica/métodos , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas do Esôfago/genética , Cadeias Leves da Proteína-1 Reguladora de Fusão/genética , Mutação , Sistema y+ de Transporte de Aminoácidos/metabolismo , Terapia Combinada , Metilação de DNA , DNA de Neoplasias/genética , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/terapia , Carcinoma de Células Escamosas do Esôfago/patologia , Carcinoma de Células Escamosas do Esôfago/terapia , Feminino , Cadeias Leves da Proteína-1 Reguladora de Fusão/metabolismo , Humanos , Masculino , Sequenciamento do Exoma
20.
Cancer Commun (Lond) ; 41(12): 1354-1372, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34347390

RESUMO

BACKGROUND: Evading immune surveillance is necessary for tumor metastasis. Thus, there is an urgent need to better understand the interaction between metastasis and mechanisms of tumor immune evasion. In this study, we aimed to clarify a novel mechanism that link tumor metastasis and immunosuppression in the development of esophageal squamous cell carcinoma (ESCC). METHODS: The expression of melanoma-associated antigen C3 (MAGE-C3) was detected using immunohistochemistry. Transwell assays were used to evaluate the migration and invasion ability of esophageal squamous cell carcinoma (ESCC) cells. Metastasis assays in mice were used to evaluate metastatic ability in vivo. Lymphocyte-mediated cytotoxicity assays were performed to visualize the immune suppression function on tumor cells. RNA sequencing was performed to identify differentially expressed genes between MAGE-C3 overexpressing ESCC cells and control cells. Gene ontology (GO) enrichment analyses was performed to identify the most altered pathways influenced by MAGE-C3. The activation of the interferon-γ (IFN-γ) pathway was analyzed using Western blotting, GAS luciferase reporter assays, immunofluorescence, and flow cytometry. The role of MAGE-C3 in the IFN-γ pathway was determined by Western blotting and immunoprecipitation. Furthermore, immunohistochemistry and flow cytometry analysis monitored the changes of infiltrated T cell populations in murine lung metastases. RESULTS: MAGE-C3 was overexpressed in ESCC tissues. High expression of MAGE-C3 had a significant association with the risk of lymphatic metastasis and poor survival in patients with ESCC. Functional experiments revealed that MAGE-C3 promoted tumor metastasis by activating the epithelial-mesenchymal transition (EMT). MAGE-C3 repressed antitumor immunity and regulated cytokine secretion of T cells, implying an immunosuppressive function. Mechanistically, MAGE-C3 facilitated IFN-γ signaling and upregulated programmed cell death ligand 1 (PD-L1) by binding with IFN-γ receptor 1 (IFNGR1) and strengthening the interaction between IFNGR1 and signal transducer and activator of transcription 1 (STAT1). Interestingly, MAGE-C3 displayed higher tumorigenesis in immune-competent mice than in immune-deficient nude mice, confirming the immunosuppressive role of MAGE-C3. Furthermore, mice bearing MAGE-C3-overexpressing tumors showed worse survival and more lung metastases with decreased CD8+ infiltrated T cells and increased programmed cell death 1 (PD-1)+ CD8+ infiltrated T cells. CONCLUSION: MAGE-C3 enhances tumor metastasis through promoting EMT and protecting tumors from immune surveillance, and could be a potential prognostic marker and therapeutic target.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Animais , Linhagem Celular Tumoral , Proliferação de Células , Transição Epitelial-Mesenquimal , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas do Esôfago/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Terapia de Imunossupressão , Camundongos , Camundongos Nus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA